
J .  Fluid Mech. (1978), uol. 84, part 4, pp .  673-694 

Printed in Great Britain 
673 

The noise from the large-scale structure of a jet 
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Engineering Department, University of Cambridge 

(Received 2 December 1976) 

In this paper we assess the importance as a noise source of the well-ordered large-scale 
structure of a jet. We propose two simple models of the structure: the first emphasizes 
those features in common with waves that initially grow on an unstable shear layer but 
eventually saturate and decay, while the second regards the abrupt pairing of eddies 
as the most significant event in the jet’s development. Our models demonstrate the 
possibility that forcing at one frequency could increase the broad-band noise of a jet, 
though, for jets with supersonic eddy convection velocities, the sound propagating in 
the direction of the Mach angle retains the spectrum of the excitation field. These 
features are consistent with the available experimental data, and strongly support the 
view that the large-scale structure of jet turbulence provides the dominant contribu- 
tion to jet noise. 

1. Introduction 
More and more experiments are suggesting that beneath the chaos of a turbulent 

jet there exists a large-scale structure which is quite well ordered even a t  high Rey- 
nolds numbers (Mollci-Christensen 1967; Lau, Fuchs & Fisher 1972; Laufer, Kaplan & 
Chu 1973; Moore 1977). Sophisticated methods are often used to extract this coherent 
structure from the background turbulence. Several workers (Petersen, Kaplan & 
Laufer 1974; Lau & Fisher 1975; Moore 1977) have used ‘eduction’ techniques. They 
chose a suitable trigger condition that marked a definite stage in the passage of an 
organized large-scale structure, and then averaged recordings of the flow at a fixed 
position and at a known time interval before or after it. Others (Crow & Champagne 
1971; Moore 1977) have forced the jet a t  the frequency of a disturbance that would 
grow naturally and have raised the latent structure above the level of the background 
turbulence; the coherent fluctuations are amplified and become much more steady and 
measurable. (It is likely that the structure of the forced jet is qualitatively similar to 
that of a jet allowed to develop naturally.) Finally, much information can be deduced 
from experiments with flows at lower Reynolds number (Brown & Roshko 1974; 
Winant & Browand 1974), since the large-scale structure is believed to be relatively 
insensitive to changes in Reynolds number. 

Crow & Champagne (1971) used a loudspeaker upstream of the nozzle t o  impose a 
periodic surging of controllable frequency and amplitude at the nozzle exit, and 
studied the response downstream with hot-wire anemometry and schlieren photo- 
graphy. They discovered that surging amplifies the corresponding instability wave. 
The wave grows in accordance with linear stability theory in the initial stages of the 
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FIGURE 1. Response of the jet to different levels of forcing (Crow & Champagne 1971). (a) 
Amplitude-response functions measured on the centre-line four diameters downstream of the jet 
exit. The response functions are labelled with Strouhal numbers, which range from 0.15 to 0.30. 
(b)  Amplitude-response functions continued through the Strouhal-number interval 0.30-0*50. 

jet's development, but of course it does not grow indefinitely; a finite limit is attained. 
This saturation limit varies for different surging frequencies and is greatest for 
Strouhal number of about 0.3 based on the jet velocity and nozzle diameter (figure 1). 
The response of the jet a t  different locations is illustrated in figure 2 .  Initially the 
waves grow very quickly, but tlhe growt8h rat,o gradually reduces downstream and 
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FIGURE 2 .  Response of a jet a t  different locations (Crow & Champagne 1971). Centre-line inten- 
sity profiles of the fundamental wave driven at  e Strouhel number of 0.30. Forcing amplitude 
u,fUs: V, no forcing; 0, 0.25% forcing; 0, 0.5%; 0, 1 % ;  0, 2 % ;  A, 4%. The ordinate 

f u, is logarithmic, so the forced profiles would have had the same shape had the jet been 
linear. 

eventually the waves decay as the velocity profile becomes more and more stable, and 
as small-scale turbulence ‘dissipates’ the coherent motion. As the level of surging is 
increased, the transition from growth to decay occurs earlier, more abruptly and 
initially with a larger value for the maximum response. 

Liu (1 974) and Chan ( 1  974a, b )  have modelled these large-scale instabilities by 
splitting the total flow into three components: the time-independent mean flow, the 
instability wave and the turbulent fluctuations. The nonlinear development of waves 
was represented as a product of an amplitude function, determined by a balance 
between the energy transferred from the mean flow and that transferred to the turbu- 
lent fluctuations, and a shape function, determined from linear stability analysis for the 
local mean flow. Crighton & Gaster (1976) adopted a different approach and modelled 
the jet’s development with linear instability waves on a laminar shear layer whose 
mean velocity is ‘slowly varying’. Their analysis avoided the ‘ closure ’ assumptions 
required by Liu and Chan, but wits restricted to linear waves. Both the theory of Chan 
and the theory of Crighton & Gaster predict well the growth of the waves and the 
approach to peak amplitude, but good agreement with experiment is not so easy to 
obtain in the decaying portion of the flow. 

It is surprising that instability waves growing and decaying on a shear layer account 
fcr some aspects of the large-scale structure of turbulent jets as well as they do since 
the eddies are known to coalesce and wave crests are ‘lost ’. ‘The new “wave length” 
some distance downstream is not due to the slow change of wave number and 
frequency, but to an actual merging of two local maxima’ (Laufer et al. 1973). 

Experiments on flows at lower Reynolds numbers (Brown & Roshko 1974; Winant t 
Browand 1974) show that waves do grow in the initial stages of the jet’s development, 
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FIGURE 3. Schematic diagram of development of a jet shear layer (Moore 1977). (a) Shear layer 
oscillates. (b )  Air becomes entrained. (c) Vortices form. (d )  Vortices form pairs and so increase 
axial spacing. 

but after two or three wavelengths they steepen and roll up into discrete concentra- 
tions of vorticity. These eddies convect downstream and interact with their neighbours 
by rolling around each other, deforming and coalescing (figure 3). Viscous diffusion then 
smears out the identities of the individual vortices to leave a single larger vortex. The 
disappearance of eddies can also occur when two strong vortices drain or tear apart a 
weak neighbour (Damms & Kuchemann 1974; Moore & Saffmann 1975). The pairing 
of eddies arises because of small variations in their strengths and spacings, and does 
not always occur at  the same point in space. In  fact the positions of pairings must vary 
over a distance comparable to the eddy separation if the shear-layer spread is to be 
smooth and linear (Petersen et al. 1974). 

Numerical modellings of two-dimensional shear layers and axisymmetric jet flows 
by Acton (1976) predict many of the features of the large-scale structures found 
experimentally. Eddies evolve and coalesce as they convect downstream, and the 
coalescence always occurs abruptly, being provoked by lateral or radial irregularities 
in the shear layer. Two stages in the development of an unforced axisymmetric jet 
obtained by Acton are illustrated in figure 4. The radial velocity has a maximum just 
downstream and a minimum just upstream of the eddies, and its axial distribution 



The noise from the large-scale structure of ujet 677 

I 

I I 

FIQURE 4. Two stages in the development of an unforced axisymmetric jet (Acton 1976). 
-, radial velocity trace; ---, dye line; ., vortex element. 

provides a concise description of the large-scale structure of the jet. A composite 
picture of the jet’s development obtained from the radial velocity traces at successive 
times is illustrated in figure 5. 

Experiments show that forcing increases the strength of the waves and eddies, and 
makes the spacings more regular. It induces those unstable waves at  the forcing 
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FIGURE 5. Axial distribution of the radial velocity at consecutive times 
(Acton 1976). Unforced jet. 

frequency to grow and form the dominant eddies. A composite picture obtained by 
Acton of a jet forced at  a Strouhal number of 1-5 is illustrated in figure 6. 

As well as increasing the strength and regularity of the jet’s coherent structures, 
forcing by a loudspeaker upstream of the nozzle exit modifies the radiated sound. 
Indeed Crow (1972) claimed that the jet could act as an amplifier of an internal tone 
and that a gain of 34 dB was possible. Moore (1977), however, found no evidence of the 
amplification of internal tones; instead high levels of forcing increased by up to 7 dB 
the radiated broad-band noise (see also Bechert & Pfizenmaier 1975). Moore demon- 
strated that exciting the shear layer at certain frequencies with a fluctuating pressure 
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FIGURE G .  Axial distribution of the radial velocity at consecutive times (Acton 1976). 
Forced jet, St = 1.5. 

of only 0.08 yo of the jet dynamic head increases the noise over the whole subsonic 
Mach number range. He found that the field shapes for the sound from the excit;ed and 
Unexcited jet were very similar; the spectra are also similar, but for the excited jet the 
peaks are steeper and the peak frequency varies with the excitation frequency and not 
with the flow speed. Unpublished work by Moore shows that regardless of the fre- 
quency all the extra broad-band noise from a forced jet orginates at the same place, about 
three diameters downstream of the nozzle exit. This is unlike the noise of an unexcited 
jet, where high frequencies come from near the nozzle exit and lower frequencies from 
further downstream. Moore (1977) also found that forcing the jet at high frequencies 
can reduce the jet's broad-band noise when the boundary layer inside the nozzle is 
thick. 

The relationship between the Iarge-scale structure in a jet and the radiated noise has 
been partly analysed by Crighton (1972). He modelled the interaction of the large-scale 
structure with the nozzle lip, and argued that a strong source of sound is associated with 
eddy-induced variations in the jet mass flow and thrust. Since upstream forcing can 
increase the strength of the eddies, the jet could act as an amplifier of internal noise, 
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drawing energy from the mean flow. The upstream noise source triggers instabilities 
of the shear layer which react back on the nozzle to generate more noise, but this noise 
is always a t  the frequency of the internal source. 

The coherent large-scale structure will also radiate sound efficiently by itself since 
the motion that generates the noise is abrupt and correlated over large distances. In 
this paper we attempt to assess how significantly it contributes to the radiated sound. 
We propose models of the source structure which we believe simulate nonlinear fea- 
tures of the jet structure that have important acoustic consequences. These centre on 
the change from growth to decay of instability waves and on the coalescence of vortex 
rings. But the source structures are not buttressed by any nonlinear theory. Indeed all 
the mathematics we use is linear. We are looking only for general trends and have 
therefore adopted a fairly heuristic approach. But, despite the many obvious deficien- 
cies of our models, we have been able to draw from them firm conclusions concerning 
the radiated sound and many of these conclusions accord with experimental fact. 

We first model (in $ 2) the source structure as a travelling instability wave that grows 
and decays in amplitude. Its phase velocity ha.s a small random component, so that the 
phase of the wave varies at  the ‘ break-point ‘ where the change from growth to decay 
occurs. If this random variation is small, we find that the radiated sound has the same 
frequency as the instability wave, but if the variation is large broad-band noise results. 

We next model (in $ 5 )  the coalescence of eddies in the jet. Powell (1964) has shown 
that this pairing radiates sound with the quadrupole characteristics of jet noise, and 
Laufer et al. (1973) and Winant & Browand (1974) have suggested that it is the mech- 
anism primarily responsible for the generation of jet noise. We model the jet as a series 
of eddies that convect downstream at a constant subsonic speed until coalescence 
occurs. When they reach the position of coalescence, the eddies merge in pairs and then 
continue convecting downstream at t’he same constant speed. We do not model the 
details of the pairing, but we do not believe that these details are essential. We assume 
that the position of coalescence varies randomly, and find that if it varies over a dis- 
tance comparable to the eddy spacing broad-band noise is radiated. 

This vortex-pairing model of the large-scale structure is inappropriate for jets if the 
convection velocity is greater than the ambient speed of sound. For at  the Mach angle 
an eddy pattern is noisy even if it  is ‘frozen’. To model such a jet realistically we must 
take account of the finite lifetime of the eddies, and this we do (in $8) by again assum- 
ing that the sources have the structure of a travelling wave that grows and decays in 
amplitude; but now we assume that the position of the maximum amplitude fluctuates. 
We find that at  the Mach angle sound is radiated only at the wave’s frequency, even if 
the position of ‘ breaking ’ varies a lot. 

2. A wave model 
Crow (1972) (see also Crighton 1975) proposed a ‘wave-antenna’ model of the large- 

scale structure of the jet and estimated the sound it would radiate. It is an extension of 
his model that we first describe. We assume, as Crow did, that the fluctuations vary 
sinusoidally along the jet, and that their amplitude a t  first grows and then decays as 
they are convected downstream of the nozzle at  x = - xo: the wave strength is propor- 
tional to 

(1) cos (wo t - w0(x + xo)/Uo> exp ( - ~ 2 / 1 2 )  
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FIGURE 7. A wave model of the large-scale structure of a jet (Crow 1972). 

(see figure 7) .  Here Uo is the eddy convection velocity, wo the radian frequency, and 1 
the length scale over which the amplitude of the instability wave changes significantly. 
We require the wave amplitude to  be small a t  the nozzle exit so that xo/Z > 1.  

We extend this model to  include an element of randomness. Because of random 
fluctuations in the flow, the response of the instability wave to forcing will vary in time 
(the phase and the amplitude at the nozzle exit will fluctuate). I n  addition, the ran- 
domness in the jet flow velocity profile will cause the phase velocity of the wave to 
vary. We shall show that, if these variations result in large random fluctuations in the 
phase of the instability wave at the ‘ break-point ’ where transition from growth to  
decay occurs, then broad-band noise is radiated. If they do not, the frequency of the 
radiated sound is the same as the frequency of the instability wave. 

We determine the effect of randomness in the phase velocity by assuming that the 
fluctuating wave strength is proportional to 

where G is a small normally distributed random function with zero mean. The ran- 
domness in the phase grows as the wave convects downstream, although the develop- 
ment of each wave packet is deterministic (its phase velocity remains fixed). 

cos{wot -wo(x+xo) [I  +~(t-x/Uo)]/Uo)exp{ -x2/12), (2) 

3. The sound radiated by an instability wave 

quadrupole-driven density field, given by 
We obtain an estimate of the sound radiated from a turbulent jet by solving for the  

with Lighthill’s (1952, 1954) stress tensor estimated as 

qi = p o . i i 2 ~ 2 6 ~ ~ 6 ( ~ ) 6 ( ~ ) ~ o s ~ ~ o t - ~ W 0 ( x + ~ o )  [I  + ~ ( t - x / U o ) ] / U o ~ e x p { - ~ ~ / Z ~ ) .  (4) 
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Here D is the jet diameter, c the speed of sound, po the ambient density and G a measure 
of the magnitude of the velocity fluctuations attained. We have represented the jet as 
an  infinite line source on the jet axis with a structure similar to the wave structure ( 2 ) .  
The source strength varies sinusoidally along the jet with an amplitude which at  first 
grows and then decays, but as it convects downatream the sinusoidal pattern gradually 
loses its coherence. We have deliberately neglected the interaction of the instability 
wave with the nozzle lip, for provided that zo 9 I the wave will be exponentially small at 
the nozzle exit. We can then also assume that the line source extends from - 00 to  + co. 

The far-field fluctuating pressure is 

R+ m C C 

- wo(E +xo) ( 1  +e{t- R / c  + [( 1 - M cos O)/Uo})) d l )  , (5) 
UO 

where R = 1x1, cos 0 = x / R  and it1 = U,,/c. The constant-ba,ndwidth spectrum of the 
radkted sound is defined by 

(P(K 4 P(X, t + 7 ) )  cos W7d7, m 

I ( # )  = lim 
R+m 1- m P O C  

where the angle brackets denote the expectation value. So 

t2 c2 po G4D4 m 
I ( w )  = 1 6n2c5R2 J-wm ]Im /- coswexp (----) 12 12 

w o ~  woycose x -cos w 0 t + w 0 7 - - +  
at2 a2 ( C C 

A normally distributed random function, y ( t )  say, with zero mean has the property 
that all it,s autocorrelation functions except that of second order vanish. The auto- 
correlation functions are defined by 

I ( @ )  = 

where R, is t,he aubocorrelation coefficient for the random funct,ion E .  
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In the limit when the randomness in the phase at  the break-point is small, i.e. 
wg(e2)x; /Uf  4 1, the radiated sound is strongly peaked at  the frequency of the 
instability wave. For, if we expand the integrand as a power series in O($(E~)  xg/U& we 
find to lowest order that 

po ,ii4w4D4Z2 
32c6R2 exp { - 31eg 12( 1 - M cos 0)2}  {S(w + w,) + S(w - w,)},  (10)  I ( w )  = 

where k, = wo/Uo. (This result is essentially the same as that obtained by Crow 1972. )  
If the growth of the instability wave is slow on a wavelength scale, i.e. k,l > 1, the 
radiated sound is exponentially small away from the Mach angle. 

1 , broad- 
band noise is radiated. In (9) the integration with respect to 7 can be performed by the 
method of steepest descents, the integral being dominated by the contribution from the 
region near 7 + (6  - 5)  (1 - M cos @/U0 = 0. Thus 

At the other extreme when the randomness is large, i.e. wt (€2) xi/ 7.J: 

where T, is a measure of the time over which E is well correlated; 

d2R,(7)/d72 = -2 /Tz  when 7 = 0. 

We expand the square root in powers of 6/xo and g/xo to find with a relative error of 
order P/xf that 

where k = w/U,. Noise is radiated over a wide frequency range. If the growth and decay 
of the amplitude of the wave is rapid compared with the growth of the randomness in 
its phase, then wg (19) 12/ Uf < 1. 

An expression for the radiated sound that patches onto the solutions for both large 
and small randomness as ( E ~ )  xf/ Ug T: tends to infinity and zero respectively can be 
found by approximating R,(7) by 1 - in (9). (This approximation is strictly valid 
only for large randomness wg (e2) xg/ Ug 9 1 .) The analysis is the same as that used in 
the method of steepest descents except that the phase terms are not approximat,ed 
by their values a t  the stationary point 7 = - (c  - 6) (1 - M cos O)/U,. So 

I ( w )  2: cos w7 cos {wo 7 + wo(t  - y) (1  - M cos 0)/U,) 
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and after some manipulation we find 
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p, ,ii4w4D412 
32ntc5R2 w, (e2)* x, I ( w )  21 

(14) 

with a relative error of order 12/x2,. Because its frequency has a random modulation, the 
instability wave can be decomposed into a broad spectrum of waves and each of these 
waves radiates noise a t  its own frequency. The width of the spectrum is proportional 
to wo(e2)*xo/U,, the randomness in the phase of the wave a t  the break-point, and 
inversely proportional to T,, the correlation time for the randomness. 

To obtain the overall sound intensity I ,  we integrate the power spectrum over all 
frequencies. For weak forcing the intensity is simply 

(15) 
po G4w$ D412 

1 6c5R2 exp { - +k; 12( 1 - M cos 0)2}.  I ?  

For strong forcing, when the power spectrum is given by ( 1 2 ) ,  the intensity is 

The intensity is amplified by five inverse powers of the Doppler factor because of 
source convection, but the singularity at the Mach angle is a spurious result; it is a 
feature of the method of steepest descents, which neglects variations in the phase. We 
cannot neglect such variations when the frequency of the radiated sound is large, but 
must use the expression for the power spectrum given by (14). Then the intensity of the 
radiated sound becomes 

(17) 
where 9 is the generalized Doppler factor 

4. Discussion of the wave model 
Crow (1972) claimed that a jet could act  as an amplifier of an internal tone and that a 

gain of 30 dB was possible. His model of the source structure suggests a reason for such 
an amplification, since forcing the jet with a tone amplifies the corresponding instability 
wave, which then radiates more sound; if randomness in the phase of the wave is 
negligible, this sound ip radiated only at, one discrete frequency, the frequency of the 
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tone. It can be seen from (10) that more sound is radiated as the instability wave is 
amplified. For there is an increase in G, the maximum amplitude that can be attained 
before saturation limits the growth of the velocity fluctuations, and this maximum 
amplitude is reached nearer the nozzle exit, where the shear layer is more unstable, the 
change from growth to decay is more abrupt, and so I is smaller (see figure 2). Such an 
amplification of an internal tone, however, will occur only when randomness in the 
phase is negligible, and we do not believe that it is normally negligible either in model 
jets or in full-scale engines. We expect the randomness to be sufficient to ensure that the 
radiated noise is broad-band. 

We examine now the consequences of the hypothesis that the large-scale structure 
forms the dominant source of jet noise (i.e. that all the noise arises from the ‘breaking’ 
of instability waves). For a ‘ quiet ’ jet this might not be true since there could be an 
important contribution from the background turbulence (source location techniques 
indicated that the noise sources are distributed throughout the jet). But, when the jet is 
forced, Moore found that all the extra broad-band noise comes from the same place 
(about three diameters downstream of t.he nozzle exit, just where the waves break). 
This suggests that it is the large-scale structure itself, and not an increase in the back- 
ground turbulence, which makes the extra broad-band noise. 

For a ‘quiet ’ jet the forcing by random fluctuations in the boundary layer at  the 
nozzle exit is broad-band, so the most unstable waves grow fastest and saturate nearest 
the nozzle. We expect the breaking of these waves to make the most noise since the 
change from growth to decay will not be so abrupt for any other wave (the velocity 
profile will be more stable and there will be more background turbulence to ‘dissipate ’ 
the wave’s energy and break up its structure). Our model predicts that increased forc- 
ing at  the frequency of one of the most unstable waves will make the jet noisier. It 
increases the radiated broad-band noise, for the maximum amplitude of the instability 
wave is increased and the change from growth to decay is more abrupt. Also, since the 
wave breaks nearer the nozzle exit, xo is reduced and the spectrum of the radiated 
sound becomes narrower with its peak increasing in amplitude (see figure 2). 

Strong enough forcing at a different frequency amplifies the wave at  that frequency 
and can cause it to saturate first. At lower frequencies, because the growth of the waves 
is so slow, the level of forcing required for this to happen is very high and is unlikely to 
be present; consequently forcing at low frequencies changes the radiated sound little. 
But at  higher frequencies the level required is quite moderate (see figure 1)) so it is 
possible for a high frequency wave to be the one that breaks nearest the nozzle. We 
believe that in these circumstances the broad-band noise might be reduced. We have 
already argued that the waves that break nearest the nozzle are the noisiest; because it 
breaks first, the high frequency wave might succeed in draining the energy from other 
waves, in particular from the ‘most unstable waves’, or in destroying their potency as 
noise sources. Then, because the high frequency waves are relatively quiet when they 
break (their growth and decay is not very abrupt and the maximum amplitude they 
can attain is fairly small; see figure I ) ,  there could be a reduction in the radiated broad- 
band noise. 

These predictions agree with experimental results of Bechert & Pfizenmaier (1 975) 
and Moore (1 977). They found that forcing a jet by a pure tone can indeed increase the 
radiated broad-band noise. Moore also showed that forcing at high frequencies could 
reduce the noise, but only when the boundary layer inside the nozzle was thick. For the 
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forced jet the spectrum of the radiated sound was more peaked than for the unforced 
jet and the peak frequency varied with the excitation frequency and not with the flow 
speed, but, in other respects and particularly a t  high frequencies, the spectrum pre- 
dicted by our model does not agree well with experimental results. Part of the difference 
arises, as does the difficulty we have encountered in making order-of-magnitude esti- 
mates of the amplitude of the radiated sound, because of the exponential reduction in 
the sound intensity when the growth and decay of the instability waves is slow on the 
wavelength scale. Estimates from the experiments of Crow & Champagne (see figure 2) 
suggest that the factor &kit2 could be as large as 100, and then the exponential reduc- 
tion would be very large indeed. But it is quite possible that the reduction should not be 
exponential. If, for example, the growth and decay is exponential rather than Gaussian, 
varying as 

~ ~ ~ ~ ~ o ~ - ~ , ~ ~ + ~ o : , ) / ~ , } ~ ~ P { -  IXp}, (18) 

we find that the power spectrum of the radiated sound is given by 

(19) 
Po ~ 4 ~ 4 0 4 1 2  

I ( 0 )  = 8nc5RR2 {l + k V (  1 - M cos 8)2}-2{6(0 + 0,) + S(U - u,)} 

instead of (10) for the case when randomness is negligible. The reduction is then alge- 
braic. Clearly theradiatedsound is too sensitive to the details of the amplitude function 
that models the saturation of the waves. 

5. A vortex-pairing model 
So far we have only modelled randomness in the phase velocity and ignored any 

variations that occur in the position of saturation. Random fluctuations in the ampli- 
tude of the wave a t  the nozzle exit must give rise to some axial drift in the position at 
which the eddy development is most rapid, and to investigate the noisiness of this 
feature we employ a simple model of the abrupt coalescence of eddies in which wave 
crests are suddenly ‘lost ’. We assume that the fluctuations in the jet vary sinusoidally 
along the jet axis and convect downstream without modification at  a constant subsonic 
velocity to the position where pairing occurs. The sinusoidal pattern then changes 
abruptly (the wavelength and the amplitude are doubled), and this new pattern con- 
vects downstream at the same speed without developing further. The fluctuations are 
therefore proportional to 

cosko(x - Uot) for x < 0, 

2cos~k0(x-U,t) for x > 0, 

where U, is the convection velocity and k, the wavenumber of the eddy pattern before 
coalescence. 

We restrict attention here to subsonic convection velocities. Of course any flow 
pattern is silent if it convects without modification at  a constant subsonic velocity, so 
any sound is radiated only as a result of pattern development. I t  might be thought that 
details of that development are important, but we have checked that they modify the 
radiated sound only slightly if the pairing occurs sufficiently mpidly. (The only detail 
that is essential is the quadrupole nature of the source, and this we have incorporated 
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in our model.) For example, there is little change in the radiated sound if the fluctua- 
tions are proportional to 

(21) 
< "'1 COB ko(x - U, t )  (1 - ex/i)  

2 COB &k,(x - U, t )  ( 1  - e-*l2) 

for 
for x > 0, 

provided only that k,l < 1.  This is because the Fourier decomposition of the flow 
pattern is changed only at  wavenumbers higher than those well coupled to the sound 
field. Both experiments and numerical modellings show that pairings occur abruptly, 
in a distance comparable to the eddy separation, so we believe our model will give 
reasonable estimates of the sound radiated at  low and medium frequencies. But we 
cannot expect it to give good estimates at  frequencies much higher than the passing 
frequency of the eddies w, = koU,, since then the details of the coalescence will be 
important. To incorporate in our model the variation in the position of coalescence, we 
assume that the eddy structure changes no longer always at x = 0 but at  x = g( t ) ,  where 
g is a normally distributed random function with zero mean; the fluctuations are pro- 
portional to 

cos k,(x - U, t )  for x < g(t) ,  
2cos~k,(x- Uot) for x > g(t) .  

A composite picture of the jet's development obtained from traces of the axial distri- 
bution of these fluctuations at  successive times is illustrated in figure 8. (In this figure 
the fluctuations have been made Continuous a t  x = g ( t ) . )  The general features of the 
jet's development are similar to those obtained by Acton in her numerical modelling 
of the forced jet (figure 6). 

(22) } 

6. The sound radiated by vortices pairing 

density field, given by 
We obtain an estimate of the radiated sound by solving for the quadrupole-driven 

a2p a2p a 2 q j  

at2 ax: axiaxj, 
--c2- = - 

assuming Lighthill's stress tensor qj to be a line source with the structure of the fluc- 
tuations in the jet. 

We fist determine the importance of the details of the eddy coaleacence by neglect- 
ing variations in the pairing position and estimating Lighthill's stre, QS tensor as 

poi2D26ij 6(y) 6(z)  cos [k,(z - U, t ) ]  (1  - e"/l) for x < 0, 

Here D is the jet diameter, c is the speed of sound, po  is the ambient density and 1 is a 
parameter that we vary to model differences in the details of the eddy pairing [cf. (21)]. 
Then 

+ 2 cos {ik, c( 1 - M cos 8) - ik, ri,(t - R/c)} ( 1  - e d l )  H ( c ) ]  dg 
p0G2U; k0D2 

[sin {k, l&(t - R/c)} - sin {3ko Uo(t - R/c))], (24) N 

- 4nc2R( 1 - M COB 8) 
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FIGURE 8. A composite picture of t,he jet’s development. Traces at  successive times of the axial 
distribution of the fluctuations : 

c o ~ [ ~ o ( ~ - ~ o t ) l ~ ~ - e x p  [ ( ~ - g ( t ) ) / I l }  for z < At ) ,  
2 c o s [ ~ k 0 ( x - U 0 t ) ] { 1 - e x p [ ( g ( t ) - ~ ) / Z ] }  for 2 > g( t ) .  

with a relative error of order k, 1( 1 - ill cos 0). Here R = 1x1, cos 0 = x / R ,  M = U,/c and 
H is the Heaviside function. The radiated sound depends little on the value of 1 
provided that k, 1 < 1 ; so we believe that to estimate the radiated sound we do not 
require a detailed knowledge of the motionsof the eddies as they coalesce, provided that 
such coalescence occurs in a distance very small compared with the eddy separation. 

The position where eddies pair is observed in experiments to vary over a distance 
which is comparable to the eddy separation even when the jet is forced, so it is import- 
ant that we include this variation in our model. We therefore assume [cf. (22)]  that 
Lighthill’s stress tensor is given by 

(25) 
p0.ii2D2aij 6(y) 6 ( z )  cos ko(x - r(, t )  for x < g ( t ) ,  

2p,iPD26jj 6(y) 6 ( z )  cos &k0(x-  C 7 , t )  for x > g ( t ) .  
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Then 

lim p ( x , t )  = - - a2 la [cos {k,[( 1 - M cos6) - k, Uo(t - R/c)} 
I<-+ m 4nc2R at2 

N-- ii2D2 a2 1 Ccos {k,  [ - ko C&(t - R/c)} H{g(t - R/c) - [I 
- 4nGR at2  - m  

+ 2 cos (4ko f l -  iko Uo(t - R/c)} H{( - g(t - R/c)}] d [ ,  (26) 
if we neglect differences in the retarded time across the source region. This introduces 
relative errors of order M cos 6' and of order M cos 8k,(g2) U, T,, where (g2)* is the 
r.m.8. value and Tg the correlation time for g. So 

po ~ 2 ~ 2  a 2  lim p(x, t )  21 - - [sin {k,g(t - R / c )  - k, Ci,(t - R/c)}  
I i - ,  m 4nc2Rk0 a t2  

- 4 sin { $ko g ( t  - R/c ) - iko Uo( t - R/c)}] ( 27) 
and 

I(0) 2L cos  sin {k,  g ( t  - R/c) - k,  Uo(t - R/c)} 

- 4 sin {&kog(t - R/c) - gk, Uo(t - R / c ) } ]  

x [sin (ko g ( t  + T + R / c )  - k,  Uo(t + 7 - R/c)} 
-4sin{+k,g(t+7- R/c)-Bk,U0(t+7- R/c)}] )d7  

"4 4D4 
cos w7 (exp [ - k;(g2) { 1 - Rg(7)}] cos w, 7 P O U W  

32n2c6R2k; l--mm - 

+ 16 exp [ - i k ;  (g2) { 1 - R,(T)}] cos &wo 7 )  d7, ( 2 8 )  
where Re indicates the real part, R, is the autocorrelation coefficient for g ,  and 
wo = k,  U,. In  reaching this result we have again used (8). 

If the variation in the position of pairing is small, i.e. (g2)  k; < 1, the integrand in 
(28)  may be expanded as a power series in (g2)  ki .  The spectrum of the radiated sound is 
then given to lowest order by 

sound is radiated only at certain discrete frequencies. But when the variation in the 
position of pairing is large, i.e. (g2) k; 9 1, the 7 integration in ( 2 8 )  may be performed 
by the method of steepest descents, the integral being dominated by the contribution 
from the region near 7 = 0. Since d 2 R , ( ~ ) / d ~ 2  = - 2/T: when 7 = 0, we find that 

33 po ii4w4D4 TB I(@) 21 - -- - 32 nBcSR2ki k,(g2))' 
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This expression is not valid a t  very high frequencies, when variations in the phase 
factor cos WT are important. Then we approximat>e R&T) by 1 - T2/Ti in (28) to obtain 

I(0) N {exp ( - kl (g2)  r2/T:) cos WT cos wo 7 

+ 16 exp ( - &ki(g2)  r2 /Tt )  cos WT cos i w o  7} d7 

The radiated sound is broad-band. The width of the spectrum is proportional to 
ko(g2)9, the randomness in the phase of the wave a t  the position of coalescence, and 
inversely proportional to T,, the correlation time of the randomness. 

The overall sound intensity I is obtained by integrating the power spectrum over all 
frequencies. mhen t,he variation in the position of pairing is small, we obtain from (29) 

I N po ,ii4U,4 k; D4/8nc5R2, (32) 
with a relative error of order (92) k;. When the variation is large, we obtain from (31) 

I N  (33) 

7. Discussion of the vortex-pairing model 
Laufer et al. (1973) and Winant & Browand (1974)  have suggested that the pairing 

of vortex rings is the mechanism primarily responsible for the generation of jet noise. 
We now examine how effective this hypothesis is in explaining the characteristics of the 
noise from excited and unexcited jets. 

Our vortex-pairing model does not describe very well the large-scale structure of an 
unforced jet, since the strengt'hs and spacings of the eddies vary a lot and pairings occur 
a t  random all along the jet axis. Noise is then generated everywhere, higher frequencies 
coming mainly from near the nozzle and lower frequencies from further downstream. 
But our model describes much better the large-scale structure of a forced jet. Forcing 
modifies the jet structure, inducing those unstable waves a t  the forcing frequency to 
grow and form the dominant jet eddies. The spacings of the eddies are more regular so 
the position of the first pairing always occurs near the same place, thoughit still varies 
over a distance comparable to the eddy separation. Since the strengths of the eddies 
are increased, the pairing process is noisier; forcing a subsonic jet can increase the 
broad-band noise. The field shapes of the radiated sound would be the same with and 
without forcing. But, unlike the noise of an unexcited jet, we expect all the additional 
noise of a forced jet to originate from the same place regardless of its frequency, and the 
spectrum of this additional broad-band noise to be more peaked with the peak fre- 
quency varying with the forcing frequency rather than with the jet velocity. 

All these features are consistent with experimental results. However our model does 
not predict very well the noise at  high frequencies, since this noise depends strongly on 
the details of the eddy coalescence. Nor does it predict that high frequency forcing can 
reduce the broad-band noise. Moore found that this reduction occurs only if the bound- 
ary layer inside bhe nozzle is thick; perhaps it is too thick to allow instability waves at 
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the forcing frequency to grow to maturity, although these waves are still able to 
inhibit the growth of others. 

We now determine the magnitude of the radiated sound predicted by our model. 
The coherent velocity fluctuations grow to an amplitude equal to about 7 % of the 
mean velocity (Moore 1977), so we assume G/UJ 1: 0.07, where Cb is the jet velocity; 
the ratio Uo/UJ of the convection velocity to the jet velocity is typically about 0.6. 
From the work of Petersen et al. (1974) we estimate that the position where pairing 
occurs varies over a distance comparable to the vortex separation ko(g2)1 21 2n; we do 
not expect the position of one pairing greatly to affect the position of any other, so we 
assume that the random function g is correlated typically for the time it takes two 
eddies to coalesce, T, wo N 4n. So TiUiI(g2) N 4 .  We use these estimates to predict the 
sound radiated fifty diameters away at  90" to the jet axis when a jet with a Mach 
number U,/c of 0.3 is forced at  a Strouhal number fD/UJ of 0.3 (wo = 2nf ) .  Our 
vortex-pairing mcidel predicts [equation (33) J that the overall sound intensity is 
72 dB while for this condition and at  this location Moore measured the overall sound 
intensity to be 74dB. Of course it is largely coincidental that the predictions of our 
fairly crude model agree so well with experiment. 

8. The Mach angle 
The vortex-pairing model we have described is appropriate only for jets with sub- 

sonic convection velocities. It predicts, as Bechert & Pfizenmaier (1 975) and Moore 
(1977) have found, that forcing the jet augments the noise over a broad frequency band 
and not just that at the forcing frequency. Crow (19721, however, claimed that jets 
could amplify internal tones, and that the amplification was particularly efficient at  
the Mach angle. In  order to see whether amplification of internal tones is to be expected 
near the Mach angle, we return to our model of the large-scale structure of the jet in 
terms of instability waves; at the Mach angle this model is not too sensitive to the 
details of the waves' growth and decay. 

We assume that random fluctuations in the strength of the wave at the nozzle exit 
cause the position of saturation to vary, and estimate Lighthill's stress tensor as 

Ti = po.ii2D2Sii S(y) 6 ( z )  cos {wo t - wo(x + xo)/Uo} exp { - (x - g ( t  - r/&))2/Z2}. (34) 

We again represent the jet as a line quadrupole source on the jet axis. The source 
strength varies sinusoidally along the jet, its amplitude growing, saturating and then 
decaying, with the position where the peak amplitude is attained varying randomly. 

The far-field fluctuating pressure is 

x exp { - [ E [  - g ( t  - R/c - (( 1 - M cos 6J)/Uo)]2/Z2} d5) . (36) 

At the Mach angle this simplifies to 

po G2D2 lwi 
4n4c2R 

= -  cos {wo(t - R/c)  - wo xo/Uo}. 
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Mach-wave sound is evidently radiated only at  one frequency regardless of any ran- 
domness in the position of saturation. The spectrum of the radiated sound is 

I(w) = ( p 0 i i 4 ~ t  D412/32c5R2) {S(W +ao) + S(W - u,)], 

I = po G4wi D412/l 6c5R2. 

( 3 7 )  

( 3 8 )  

and the overall sound intensity is 

All the signals emitted by a wave, as it grows, saturates and decays, arrive simul- 
taneously a t  the Mach angle; so it makes no difference to the observer where the wave 
reaches its maximum amplitude, and randomness in the position of saturation cannot 
broaden the spectrum of the radiated sound. We consequently find Crow’sresults quite 
plausible. They are not inconsistent with the more recent lower-speed surveys of 
Bechert & Pfizenmaier and Moore. 

9. Conclusions 
We have proposed two models of the acoustic sources in a turbulent jet. In  the first 

we assume that they have a structure similar to instability waves which initially grow 
on an unstable shear layer, but then saturate and eventually decay. The abruptness of 
the change from growth to decay determines the magnitudes of the radiated sound 
while the randomness in the phase velocity of the waves determines its spectrum; 
broad-band noise is radiated if the randomness is large. 

Forcing the jet at one frequency by, for example, an internal noise source amplifies 
the corresponding wave and we show that this increases the radiated broad-band noise. 
Such an increase has been observed experimentally, and our model is able to predict 
accurately many of its details. In  particular we predict that the field shapes and 
spectra for the excited and unexcited jet are similar, though the spectrum for the 
excited jet is more peaked and the peak frequency depends on the forcing frequency 
and not on the mean flow speed. Also we predict that all the extra noise, regardless of 
its frequency, originates from the same place when a jet is forced. Finally we argue 
that jet noise could be dominated by the noise of the wave that ‘breaks’ nearest the 
nozzle, so that high frequency forcing could reduce the broad-band noise. But our 
model does not predict very well the noise radiated a t  high frequencies; and the magni- 
tude of the radiated sound is difficult to estimate because it is too sensitive to the details 
of the change from growth to decay of the waves. 

Our second model examines the noise radiated when two eddies coalesce. Since the 
coalescence occurs abruptly, we believe that its details are important only at high 
frequencies and need not be incorporated in our model. The magnitude of the radiated 
sound is then determined by the eddy strength, and the spectrum by the randomness 
in the position of pairing. Even when the jet structure is made more regular by up- 
stream forcing, the position where pairing occurs varies over a distance comparable to 
the eddy separation, and then our model predicts that the radiated sound is broad- 
band. 

It has been suggested that the pairing of eddies is the mechanism primarily res- 
ponsible for the production of jet noise, and our results support this hypothesis. Our 
vortex-pairing model predicts the characteristics of excited jets better than our wave 
model does (though, as we should expect, the vortex-pairing model is still not very good 
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a t  high frequencies). We find that with the vortex-pairing model estimates of the 
radiated sound are not so sensitive to the details of the flow and in fact agree well with 
the values found experimentally. The model does not predict a reduction in the broad- 
band noise with high frequency forcing, but this, we suggest, might occur when the 
boundary layer inside the nozzle is thick because waves at  the forcing frequency 
cannot grow on a thick shear layer though they are still able to inhibit the growth of 
other waves. For jets with convection speeds faster than the ambient speed of sound, 
we predict that the noise radiated at  the Mach angle is narrow-band, so there the jet 
could act as an amplifier of an internal tone. 

The experimental support for many of the predictions of our model suggests that the 
real sources in a jet might have a simple structure similar to that which we describe. 
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helpful discussions. A. J. Kempton gratefully acknowledges the support of his 
employers, Rolls-Royce Ltd, Aero-Division, Derby, and an S.R.C. Industrial Student- 
ship. 

REFERENCES 
ACTON, E. 1976 A modelling of large jet eddies. Ph.D. thesis, Cambridge University. 
BECHERT, D. & PFIZENMAIER, E. 1975 On the amplification of broadband jet noise by a pure 

tone excitation. J .  Sound Vib. 43, 581-587. 
BROWN, G. L. & ROSHKO, A. 1974 On density effects and large structures in turbulent mixing 

layers. J .  Fluid Mech. 64, 775-816. 
CHAN, Y. Y .  1974a Spatial waves in turbulent jets. Phys. Fluida 17, 46-53. 
CHAN, Y .  Y. 19746 Spatial waves in turbulent jets. 11. Phys. Fluids 17, 1667-1670. 
CRIGHTON, D. G. 1972 The excess noise field of subsonic jets. J .  Fluid Mech. 56, 683-694. 
CRIGHTON, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerospace Sci. 

CRIGHTON, D. G. & GASTER, M. 1976 Stability of slowly diverging jet flow. J .  Fluid Mech. 77, 

CROW, S .  C. 1972 Acoustic gain of a turbulent jet. Am. Phys. SOC. Meeting, Univ. Colorado, 
Boulder, paper IE.6.  

CROW, S. C. & CHAMPAGNE, F.  H. 1971 Orderly structure in jet turbulence. J .  Fluid Mech. 48, 
547-591. 

DAMMS, S. M. & KUCHEMANN, D. 1974 On a vortex-sheet model for the mixing between two 
parallel streams. I. Description of the model and experimental evidence. Proc. Roy. SOC. A 

LAW, J. C. & FISHER, M. J. 1975 The vortex-sheet structure of turbulent jets. Part 1.  J .  Fluid 
Mech. 67, 299-337. 

LAW, J. C., FUCHS, H. V. & FISHER, M. J. 1972 The intrinsic structure of turbulent jets. J .  
Sound Vib. 22, 379-406. 

LAUFER, J . ,  KAPLAN, R. E. & CHU, W. T. 1973 On the generation of jet noise. Specialists' 
Meeting ‘Noise Mechanisms’, Brussels. AGARD Rep. no. CP 131, paper 21. 

LIGHTHILL, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. Roy. SOC. 
A 211, 564-587. 

LIGHTHILL, M. J. 1954 On sound generated aerodynamically. 11. Turbulence as a source of 
sound. Proc. Roy. Soc. A 222, 1-32. 

LIU, J. T. C. 1974 Developing largo-scale wavelike eddies and the near jet noise field. J .  FZuid 
Mech. 62, 437-464. 

MOLLB-CHRISTENSEN, E. 1967 Jet  noise and shear flow inshbility seen from an experimenter’s 
viewpoint. J .  Appl .  Merh,. 34, 1-7. 

16, 31-96. 

397-4 1 3. 

339, 451-461. 



69 4 

MOORE, C.  J .  1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 

MOORE, D. W. & SAFFMANN, P. G .  1975 The density of organized vortices in a turbulent mixing 

PETERSEN, R. A., KAPLAN, R. E. & LAUFER, J. 1974 Ordered structures and jet noise. N.A.S.A.  

POWELL, A. 1964 Theory of vortex sound. J. Acoust. SOC. Am. 36, 177-195. 
STRATANOVITCH, R. L. 1963 Topics in the Theory of Random Noise, vol. I. Gordon & Breach. 
WINANT, C. D. & BROWAND, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing- 

J .  E .  Ffowcs Williams and A .  J .  Kempton 

80, 321-367. 

layer. J. Fluid Mech. 69, 465-473. 

Contractor Rep. CR-134733. 

layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237-255. 


